Observed D×10 ³ cm ² /sec
0.72
1.49
1.60
1.32
1.50
1.43
1.13
1.17
1.47
0.75
1.04
1.24

verage deviation

t and most tem because id cover the

0.1 N TINO3.ª

Observed D×10 ^s cm ² /see	
2.07	
1.35	
1.80	
1.69	
0.95	
2.00	
1.67	
1.03	
0.88	
1.48	
1.73	

erage deviation

ental work. rom Figs. 1 coefficient , and this

DH.A

Observed D ×10 ^s cm ² /sec	
1.61 0.68 0.40	
0.18 0.084 0.041	
3.75 2.29 1.26	
0.70 0.35 0.088	

age deviation

Fig. 1. Diffusion coefficients versus pressure, 0.1 N Hg(NO₃)₂.

minimum shifts toward lower pressure as the temperature increases. The curves also show a maximum in the pressure range 250-600 atmospheres which moves to

Fig. 2. Diffusion coefficients versus pressure, 0.1 N $CaCl_2$.

lower pressure as temperature decreases and disappears at $0\,^{\circ}\text{C}.$

Curves of activation enthalpy and the increase in

Fig. 3. Diffusion coefficients versus pressure, O.1 N Ca(NO₃)₂.

Fig. 4. Diffusion coefficients versus pressure, 0.1 N TINO₃.

activation entropy from one atmosphere to P are shown in Figs. 7 and 8. Any interpretation of these curves

Fig. 5. Diffusion coefficients versus pressure, 0.01 M HgCl₂ in n-butanol:

would be dubious because the activation enthalpy and entropy depend on the displacement of two or more

Fig. 6. Activation volume ratios versus pressure.
0.1 N Hg(NO₃)₂.